Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (7): 1374-1380    DOI: 10.3785/j.issn.1008-973X.2017.07.015
机械与能源工程     
液化天然气冷能发电复合流程的构建及能效分析
张利慧, 董辉, 赵亮
东北大学 国家环境保护生态工业重点实验室, 辽宁 沈阳 110819
Structure and energy efficiency analysis of combined research on liquefied natural gas cold energy generation
ZHANG Li-hui, DONG Hui, ZHAO Liang
State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China
 全文: PDF(1140 KB)   HTML
摘要:

为了探究液化天然气(LNG)冷能发电和NG(天然气)烟气的余热回收,提出由级联朗肯循环与LNG直接膨胀构成的一体化工艺流程.根据LNG气化过程中物理释放特性,结合NG烟气余热特点,确定工艺流程中各个节点的热工参数,开展工艺流程的热力学分析,以论证工艺流程的理论可行性.对LNG气化压力对系统热力学性能的影响进行分析.研究结果表明,LNG直接膨胀与朗肯循环一体化工艺符合热力学基本定律,具有理论可行性,是LNG冷能发电的有效途径之一.在一体化系统中,LNG冷能发电量为55.52 kW·h/t,烟气余热回收效率为41.17%,冷能利用的效率为16.25%.主要的损失集中于各个换热器上,占系统总损失的87.86%.随着LNG气化压力的增大(0.2 ~2.0 MPa),系统的损失降低,系统的效率升高.

Abstract:

An integration process of cascade Rankine cycle and direct expansion of liquefied natural gas(LNG)was constructed for LNG cold energy power generation and natural gas (NG) flue gas waste heat recovery. The thermal parameters of every node in the process were calculated according to the physical exergy release characteristics of LNG regasification process and features of NG waste heat utilization process. Then the thermal analysis of integration process was conducted for comprehending the feasibility of the integration process. The influence of the LNG regasification pressure on the thermal performance of integration process was analyzed. Results show that the integration process of LNG cold energy generation is basically feasible from thermodynamic laws. The output power of the whole process is 55.52 kWh/tLNG, and the efficiency of the waste heat recovery in the integration process is 41.17 %. The exergy efficiency of LNG cold energy generation in the integration process is 16.25 %. The main devices of exergy loss are the heat exchangers, and the exergy loss in the heat exchangers accounts for 87.86 % of the total exergy loss in the process. The exergy loss of the whole process continuously decreases and the exergy efficiency continuously increases along with the increase of the LNG regasification pressure(0.2-2.0 MPa).

收稿日期: 2016-06-23 出版日期: 2017-07-08
CLC:  TE992  
通讯作者: 董辉,男,教授.ORCID:0000-0002-1236-1351.     E-mail: dongh@smm.neu.edu.cn
作者简介: 张利慧(1992—),男,硕士生,从事LNG冷能利用的研究.ORCID:0000-0001-9105-4714.E-mail:1092053014@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

张利慧, 董辉, 赵亮. 液化天然气冷能发电复合流程的构建及能效分析[J]. 浙江大学学报(工学版), 2017, 51(7): 1374-1380.

ZHANG Li-hui, DONG Hui, ZHAO Liang. Structure and energy efficiency analysis of combined research on liquefied natural gas cold energy generation. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(7): 1374-1380.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.07.015        http://www.zjujournals.com/eng/CN/Y2017/V51/I7/1374

[1] 余黎明,江克忠,张磊.我国液化天然气冷能利用技术综述[J].化学工业,2008,26(3): 9-18. YU Li-ming,JIANG Ke-zhong,ZHANG Lei.The summarize of LNG cold energy utilization technology in China [J]. Chemical Industry,2008,26(3): 9-18.
[2] TSATSARONIS G,MOROSUK T. Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas [J]. Energy,2010,35(2): 820-829.
[3] HISAZUMI Y,YAMASAKI Y. Proposal for a high efficiency LNG power-generation system utilizing waste heat from the combined cycle [J]. Applied Energy,1998,60(3): 169-182.
[4] 王强,厉彦忠,陈曦.一种基于低品位热源的LNG冷能回收低温动力系统[J].热能动力工程,2003,18(3): 245-322. WANG Qiang, LI Yan-zhong, CHEN Xi. A low grade heat source based on the LNG cold energy recovery dynamic system in low temperature [J]. Journal of Engineering for Thermal Energy and Power,2003,18(3) : 245-322.
[5] 赵斌.烟气余热节能技术在供热燃气锅炉节能改造中的应用机理:以庆升实业公司庆升化工厂为例[J].科技经济导刊,2016,2(10): 121-122. ZHAO Bin. The application mechanism for energy saving technology of flue gas waste heat in the application of heating gas boiler energy conservation transformation: take Qingsheng chemical plant of Qingsheng company as an example [J]. Science and Technology Economy,2016, 2(10): 121-122.
[6] ZHAO L,DONG H,TANG J J,et al. Cold energy utilization of liquefied natural gas for capturing carbon dioxide in the flue gas from the magnesite processing industry [J]. Energy,2015,8(110): 1-12.
[7] 饶文姬,赵良举,刘朝,等.利用LNG冷能与工业余热的有机朗肯循环研究[J].工程热物理学报,2014,35(2): 213-217. RAO Wen-ji,ZHAO Liang-ju,LIU Chao,et al. A reach of organic Rankine cycle composed with LNG cod energy and industrial waste heat [J]. Journal of Engineering Thermophysics,2014,35(2): 213-217.
[8] 朱昌伟,马国光,李刚.LNG气化站的安全设计[J].煤气与热力,2007,27(7): 20-23. ZHU Chang-wei,MA Guo-guang,LI Gang. Safetydesign of LNG vaporizing station [J]. GAS and Heat,2007,27(7) : 20-23.
[9] 李东,马维伟,张晓辉.燃气锅炉排烟热回收技术探讨 [J].现代化工,2007,27(2): 466-473. LI Dong, MA Wei-wei, ZHANG Xiao-hui. Technical discussion for the exhaust recovery of the gas-fired boiler [J]. Modern Chemical Industry,2007,27(2): 466-473.
[10] 王威,张娜,蔡睿贤.LNG冷动力系统的工质选择及系统分析方法[J].燃气轮机技术,2001,14(3): 17-20. WANG Wei,ZHANG Na,CAI Rui-xian. Working medium selection and system analysis method of LNG cold exergy system [J]. Gas Turbine Technology,2001,14(3): 17-20.
[11] DONG H,ZHAO L. Using cryogenic exergy of liquefied natural gas for electricity production with the stirling cycle [J].Energy,2013,10(63): 10-18.
[12] DAUBER F,SPAN R. Modeling Liquefied-natural-gas processes using highly accurate property models [J]. Applied Energy,2012,97(45): 822-827.
[13] BROWN J,BRIGNOLI R,DAUBMAN S. Methodology for estimating thermodynamic parameters and performance of working fluids for organic Rankine cycles [J]. Energy,2014,73(14): 818-828.
[14] 曹兴起,赵晖,杨卫卫,等.综合利用低品位余热与LNG冷能的复合循环系统[J].热力发电,2014,43(14): 49-55. CAO Xing-qi, ZHAO Hui, YANG Wei-wei, et al. Comprehensive utilization of low grade waste heat and LNG cold energy combined cycle system [J]. Thermal Power Generation,2014,43(14): 49-55.
[15] 傅秦生.能量系统的热力学分析方法[M].西安:西安交通大学出版社,2006.
[16] CHARLES S,CHRISTOPHER D. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery [J]. Applied Thermal Energy,2013,32(9): 711-722.

No related articles found!