Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (7): 1446-1452    DOI: 10.3785/j.issn.1008-973X.2017.07.024
信息工程     
水质监测传感器数据采集节点的设计和实现
肖璟博1,2, 陈敏1, 刘云涛3, 刘云超1, 陈杰1
1. 中国科学院微电子研究所, 北京 100029;
2. 中国科学院大学, 北京 100049;
3. 哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001
Design and implementation of sensor data acquisition node for water monitoring
XIAO Jing-bo1,2, CHEN Min1, LIU Yun-tao3, LIU Yun-chao1, CHEN Jie1
1. Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
 全文: PDF(3027 KB)   HTML
摘要:

针对水质监测无线传感器网络中实时性和多参数监测的要求,设计并实现用于水质监测的传感器数据采集节点.根据水质传感器输出信号的特点,提出新型的信号调理及检测通路复用的方式,复用的信号通路由自主研发的传感器信号调理电路芯片实现.在软件上设计循环检测中断的方式,结合3G移动网络通信技术,实现了水质监测多参数数据的实时上传.测试结果表明,通过与DO100以及标准溶液进行比较测试,节点能够准确采集温度、DO(溶解氧浓度)、pH(酸碱度)、ORP(氧化还原电位)、EC(电导率)5种水质参数数据,并能够实时上传监测结果至云服务器.

Abstract:

A sensor data acquisition node was designed and implemented for water monitoring, which aimed at fulfilling the real-time and multiparameter requirements in the water monitoring wireless sensor network. A novel signal conditioning and detecting path reuse method was proposed and the reused signal path was implemented by the integrated sensor signal conditioning chip according to the output signal characteristics of water quality sensors. A cycle detecting with interruption method was designed in the software and the multiparameter data of water monitoring was uploaded in real time through the 3rd generation telecommunication. The experimental results were compared with that of DO100 and some standard solutions. The node can accurately acquire the data of five water quality parameters, i.e., temperature, dissolved oxygen, potential of hydrogen, oxidation-reduction potential, and electrical conductivity. The monitoring results were uploaded to Cloud Server in real time.

收稿日期: 2016-06-02 出版日期: 2017-07-08
CLC:  TN4  
基金资助:

国家“973“重点基础研究发展规划资助项目(2015CB352100)

通讯作者: 陈杰,男,研究员,博导.ORCID:0000-0002-1760-4658.     E-mail: jchen@ime.ac.cn
作者简介: 肖璟博(1991—),男,博士生,从事模拟集成电路的研究.ORCID:0000-0002-3694-8405.E-mail:xiaojingbo@ime.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

肖璟博, 陈敏, 刘云涛, 刘云超, 陈杰. 水质监测传感器数据采集节点的设计和实现[J]. 浙江大学学报(工学版), 2017, 51(7): 1446-1452.

XIAO Jing-bo, CHEN Min, LIU Yun-tao, LIU Yun-chao, CHEN Jie. Design and implementation of sensor data acquisition node for water monitoring. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(7): 1446-1452.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.07.024        http://www.zjujournals.com/eng/CN/Y2017/V51/I7/1446

[1] 周怀东,彭文启,杜霞,等.中国地表水水质评价[J].中国水利水电科学研究院学报,2004, 02(04): 21-30. ZHOU Huai-dong, PENG Wen-qi, DU Xia, et al. Assessment of surface water quality in China [J]. Journal of China Institute of Water Resources and Hydropower Research, 2004, 02(04): 21-30.
[2] 吴键,袁慎芳.无线传感器网络节点的设计和实现[J].仪器仪表学报,2006,27(09): 1120-1124. WU Jian, YUAN Shen-fang. Design and implementation of a general node for wireless sensor network [J]. Chinese Journal of Scientific Instrument, 2006, 27(09): 1120-1124.
[3] JI W, XIAO L R, YU L S, et al. A remote wireless sensor network for water quality monitoring [C]//2010 International Conference on Innovative Computing and Communication and 2010 Asia-Pacific Conference on Information Technology and Ocean Engineering (CICC-ITOE). Macao: IEEE, 2010: 7-12.
[4] LAMBROU T P, PANAYIOTOU C G, ANASTASIOU C C. A low-cost system for real time monitoring and assessment of potable water quality at consumer sites [C]//2012 IEEE Sensors. Taipei: IEEE, 2012: 1-4.
[5] LAMBROU T P, ANASTASIOU C C, PANAYIOTOU C G, et al. A low-cost sensor network for real-time monitoring and contamination detection in drinking water distribution systems [J]. IEEE Sensors Journal, 2014, 14(8): 2765-2772.
[6] AMRUTA M K, SATISH M T. Solar powered water quality monitoring system using wireless sensor network [C]//2013 International Multi-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s). Kottayam: IEEE, 2013:281-285.
[7] JIN N, MA R, LV Y F, et al. A novel design of water environment monitoring system based on WSN [C]//2010 International Conference on Computer Design and Applications (ICCDA). Qinhuangdao: IEEE, 2010: V2-593-V2-597.
[8] RAO A S, MARSHALL S, GUBBI J, et al. Design of low-cost autonomous water quality monitoring system [C]//2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI). Mysore: IEEE, 2013: 14-19.
[9] 武静涛,马长宝,刘永波.水质监测无线传感器网络节点的设计[J].计算机测量与控制,2009,17(12): 2575-2578. WU Jing-tao, MA Chang-bao, LIU Yong-bo. Design of wireless sensor network node for water quality monitoring [J]. Computer Measurement and Control, 2009,17(12): 2575-2578.
[10] DENG S C, YANG J, WU Y, et al. Research on small mobile water quality online monitoring device [C]//2013 10th IEEE International Conference on Control and Automation (ICCA). Hangzhou: IEEE, 2013: 351-356.
[11] MO D Q, ZHAO Y, CHEN S S. Automatic measurement and reporting system of water quality based on GSM [C]//2012 2nd International Conference on Intelligent System Design and Engineering Application (ISDEA). Sanya: IEEE, 2012: 1007-1010.
[12] O'FLYRM B, MARTINEZ R, CLEARY J, et al. SmartCoast: a wireless sensor network for water quality monitoring [C]//32nd IEEE Conference on Local Computer Networks. Dublin: IEEE, 2007: 815-816.
[13] WU Q L, LIANG Y, SUN Y X, et al. Application of GPRS technology in water quality monitoring system [C]//World Automation Congress (WAC). Kobe: IEEE, 2010: 7-11.
[14] 标准型智能溶氧仪DO100[OL]. 2008-01-01. http://www.eutech.cn/cn/product/out.asp?id=113.

[1] 吴世豪, 罗小华, 张建炜, 谈智涛. 基于FPGA的新边缘指导插值算法硬件实现[J]. 浙江大学学报(工学版), 2018, 52(11): 2226-2232.
[2] 朱涛涛, 项晓燕, 陈晨, 孟建熠, 严晓浪. 面向宽电压应用的容错时钟门控单元设计[J]. 浙江大学学报(工学版), 2018, 52(9): 1796-1803.
[3] 林琦, 卞悦, 丁旭, 莫炯炯, 陈华, 王志宇, 郁发新. 基于C#的T/R多功能芯片可靠性测试系统[J]. 浙江大学学报(工学版), 2018, 52(8): 1489-1498.
[4] 陈铖颖, 陈黎明, 黄新栋, 张宏怡. 基于共源共栅反相器的极低功耗Sigma-Delta调制器设计[J]. 浙江大学学报(工学版), 2018, 52(6): 1068-1072.
[5] 雷宇, 陈后鹏, 王倩, 李喜, 胡佳俊, 宋志棠. 相变存储器预充电读出方法[J]. 浙江大学学报(工学版), 2018, 52(3): 531-536.
[6] 李冰, 金涛, 陈帅. 提高SRAM PUFs密钥生成可靠性的方法[J]. 浙江大学学报(工学版), 2018, 52(1): 133-141.
[7] 陈琛, 孙可旭, 冯建宇, 奚剑雄, 何乐年. 超低功耗无片外电容的低压差线性稳压器[J]. 浙江大学学报(工学版), 2017, 51(8): 1669-1675.
[8] 刘士兴, 范对鹏, 程龙, 王世超, 丁力, 易茂祥. 静态随机存储器双向互锁存储单元的抗老化设计[J]. 浙江大学学报(工学版), 2017, 51(7): 1453-1461.
[9] 蓝帆, 潘赟, 严晓浪, 宦若虹, CHENG Kwang-ting. 用于容错片上网络的可工作性评估框架[J]. 浙江大学学报(工学版), 2017, 51(7): 1437-1445.
[10] 孟建熠, 严晓浪, 葛海通. 基于指令回收的低功耗循环分支折合技术[J]. J4, 2010, 44(4): 632-638.
[11] 郑丹丹, 张培勇, 吕冬明. 基于粒子群优化算法的有用时钟偏差规划[J]. J4, 2010, 44(4): 665-669.
[12] 胡晓慧, 张慧熙, 沈继忠. 基于多阈值技术的低功耗优先编码器设计[J]. J4, 2009, 43(5): 860-863.